Implying that the rice and sorghum genes can provide alternative information for marker development of some wheat genes. The bread wheat AbMole BioScience Life Science Reagents genome consists of three subgenomes that diverged from a common ancestor about 2.5�C4.5 MYA. The three subgenomes are still very closely related after hundreds of thousands of years of independent evolution and genetic linkage maps and comparative analyses over the past 20 years have revealed substantial conservation of orthologs among the A, B, and D subgenomes. Conventional genetic analyses have also suggested that the W1 and W2 glaucousness loci are duplicated genes and that the Iw1 and Iw2 non-glaucousness loci are also duplicated. Additional molecular mapping experiments have revealed that both Iw1 and Iw2 are located on the distal part of chromosomes 2BS and 2DS, suggesting that they also may be orthologs. Low polymorphisms are observed on chromosome 2DS compared to chromosome 2BS, and of 11 EST derived markers mapping in the Iw1 genomic region, only 7 are located on the Iw2 genetic linkage map. An F2 mapping population containing 4949 plants was used to narrow Iw1 to a 0.96 cM genomic region flanked by the CA499581 and BE498358 EST markers and this region contained 10 predicted genes in the Brachypodium interval from Bradi5g01220 to Bradi5g01130, the same as the result of Adamski et al.. However, by using 1161ITMI RILs, Iw2 could only be narrowed to a 4.1 to 5.4-cM genomic region corresponding to 26 predicted genes flanked by the CJ949174 and CJ886319 EST markers from Bradi5g01280 to Bradi5g01020 in Brachypodium. In common wheat, mapping of genes on the D chromosomes are often more difficult. The Iw1 and Iw2 also present such an example. Comparative genetic mapping results indicated that Iw1 and Iw2 are located in the orthologous genomic regions of chromosomes 2BS and 2DS and function as orthologs. The mapping results from Iw1 will greatly help identification of Iw2 genes. The EST markers BF474014 and CJ876545 are homologous to Bradi5g01180 and Bradi5g01160 and their co-segregation with Iw1 and Iw2 can serve as starting points for chromosome landing, physical mapping and map-based cloning of the non-glaucousness genes in wheat. The C3 toxins from Clostridium botulinum and Clostridium limosum selectively mono-ADP-ribosylate the small guanosine triphosphate binding proteins Rho A, -B, and �CC at Asn-41, which inhibits Rho-signalling in mammalian cells. Among a variety of cellular responses, C3-treatment protects cells from apoptosis and inhibits proliferation. Interestingly, C3 toxins are not efficiently taken up into most eukaryotic cell types including epithelial cells and fibroblasts and it was suggested that uptake of C3 toxin into cells might only occur by non-specific pinocytosis when large amounts of C3 are applied for incubation periods longer than 24 h. We discovered recently that monocytes/macrophages are the target cells for the clostridial C3 toxins. These cells internalize comparatively low concentrations of C3 toxins within approx. 3 h, most likely by a specific uptake mechanism including receptor-mediated KRX-0401 157716-52-4 endocytosis and subsequent translocation from acidified endosomal vesicles into the host cell cytosol. In these cells, the C3-catalyzed Rho-modification leads to re-organization of the actin cytoskeleton and characteristic morphological changes. Enzymatically inactive C3bot1E174Q is internalized into monocytes/macrophages comparable to wildtype C3 proteins and due to lacking adverse effects on cells, it serves as carrier for selective delivery of ��foreign�� proteins into the cytosol of monocytes/macrophages. In order to deliver C3 Rho-inhibitor into the cytosol of various cell types, we previously developed the recombinant fusion toxin C2IN-C3lim, which exploits the binary C2 toxin from C. botulinum for its transport into cells.