Therefore, we chose 1022 M as a suitable final MNZ concentration in the second step of the coating preparation procedure. To construct a novel bi-functional Ca-P coating, we integrated 1022 M MNZ and 1025 M SIM together into biomimetic Ca-P coatings. To test these coatings in vitro, human MSCs and P. LY 341495 gingivalis were used to assess the pro-osteodifferentiation and antibacterial capabilities of this bi-functional coating. Zone of inhibition experiments confirmed that the growth of P. gingivalis was inhibited by coatings containing MNZ. Moreover, the results also proved that the presence of SIM did not influence the biological effects of MNZ. Interestingly, we also found that the MNZ-loaded Ca-P coatings retained their antibacterial effects even after 2 and 4 days of exposure to PBS. This suggests that the bi-functional coating prepared in this study could maintain its antibacterial capability for a certain period of time in a liquid environment similar to in vivo conditions. The initial post-operative stage is a dangerous stage for patients receiving orthopedic implants, due to the increased risk of infection caused by pathogenic microorganisms, and prophylactic antibiotic application is a simple and practical way to circumvent this problem. The systemic application of antibiotics has several drawbacks as outlined above, which can be averted by the local release of MNZ from the bi-functional coating over several days. Cell proliferation experiments demonstrated that a bi-functional coating loaded with specific concentrations of MNZ and SIM had negligible adverse effects on the proliferation of human MSCs. Furthermore, cell differentiation experiments that measured ALP activity, BMP-2 protein secretion, OCN protein expression and osteogenic gene expression suggested that SIM-loaded coatings could L-748,337 markedly stimulate the osteogenic differentiation of hBMMSCs and hASCs, even in proliferation medium. These results are encouraging, as hBMMSCs and hASCs have been considered as effective sources of adult MSCs and can be applied in stem cell-based therapies and bone tissue engineering applications. As MSCs are initially recruited to the implant surface when it is surgically implanted, the bi-functional coating presented here could enhance osseointegration by direct inducing the recruited MSCs. Also, the osseointegration of implants is accelerated if the implant is surrounded by a sheet of hBMMSCs ; therefore, this bi-functional coating could further improve osseointegration when combined with the cell sheet technique.